MPSI | Programme de colle | Semaine du 13/05/2024

C4 · Dosages

Exercices de C6 et C7 faisant intervenir des dosages. Cf. programme de la semaine précédente.

C6 · Réactions de dissolution et de précipitation

Exercices. Cf. programme de la semaine précédente.

C7 · Réactions d'oxydo-réduction

 $\label{eq:constraint} \square \ \ \mbox{Savoir que E°} \big(\mbox{$H^{+}_{(aq)}$} \big/ \mbox{$H_{2\,(g)}$} \big) = 0.$

Cours + Exercices	
	Définir un oxydant et un réducteur.
	Relier la position d'un élément dans le tableau périodique et le caractère oxydan ou réducteur.
	Connaître le nom, la formule chimique et la nature (oxydant/réducteur) des espèces suivantes : ion thiosulfate, ion permanganate, ion hypochlorite, ion du peroxyde d'hydrogène.
	Déterminer le nombre d'oxydation d'un élément dans un édifice.
	Déterminer les nombres d'oxydation extrêmes d'un élément à partir de sa position dans le tableau périodique.
	Savoir équilibrer un demi-équation électronique.
	Connaître les couples redox de l'eau.
	Vocabulaire : électrode, électrolyte, pont salin, demi-pile, pile, anode, cathode.
	Établir la représentation schématique d'une pile donnée.
	Déterminer la capacité d'une pile.
	Savoir que l'électrode standard à hydrogène constitue une référence de
	potentiel: $E_{ESH} = 0 \text{ V}$.
	Énoncer la formule de Nernst, ainsi que son approximation à 298 K.
	$\mathrm{E} = \mathrm{E}^{\circ}(\mathrm{Ox/Red}) + \frac{RT}{n\mathcal{F}} \ln \left(\frac{a_{\mathrm{Ox}}^{\alpha} a_{\mathrm{H}^{+}}^{\gamma}}{a_{\mathrm{Red}}^{\beta}} \right) \simeq E^{\circ}(\mathrm{Ox/Red}) + \frac{0.06}{n} \log \left(\frac{a_{\mathrm{Ox}}^{\alpha} a_{\mathrm{H}^{+}}^{\gamma}}{a_{\mathrm{Red}}^{\beta}} \right)$

☐ Connaître le principe de la mesure du potentiel d'une solution : rôle de l'électrode

☐ Savoir que E° constitue une frontière approximative à pH nul entre les domaines

de référence, nature et rôle de l'électrode de mesure, rôle du fritté.

de prédominance / existence de l'oxydant et du réducteur.

☐ Savoir équilibrer une réaction d'oxydo-réduction.

□ Démontrer la relation entre la constante d'équilibre et les potentiels standard : $K = 10^{\frac{n}{0.06} \left(E^{\circ}(Ox) - E^{\circ}(Red) \right)}$
$K = 10^{-0.06}$
 Prévoir le caractère favorisé ou non d'une réaction d'oxydo-réduction à partir des potentiels standard.
☐ Définir une réaction de dismutation et une réaction de médiamutation.
C8 · Diagrammes potentiel-pH
Cours + Exercices
☐ Connaître les différentes conventions de tracé.
\Box Établir & Connaître le diagramme E-pH de l'eau (avec pour convention $P_{tr} =$
1 bar).
☐ Pour un diagramme fourni, savoir :
 Associer une espèce à un domaine.
 Déterminer un potentiel de frontière.
 Déterminer un potentiel standard.
 Déterminer une constante d'équilibre (pK_s ou pK_a).
 Déterminer la pente d'une frontière.
 Déterminer le pH d'une frontière verticale.
□ Prévoir la stabilité d'une espèce en solution aqueuse en superposant des
diagrammes E-pH.
 Définir la zone d'immunité, la zone de passivation et la zone de corrosion d'un métal.
 Savoir qu'un diagramme E-pH ne donne aucune information sur la cinétique des réactions.

☐ **Prévoir** une éventuelle dismutation ou médiamutation à l'aide d'un diagramme

E-pH fourni.