MPSI | Programme de colle | Semaine du 18/11

S2 · Interférences à deux ondes

Cours + exercices

- Savoir associer à tout signal harmonique $s=A\cos(\omega t+\varphi)$ le signal complexe $\underline{s}=A\ e^{i(\omega t+\varphi)}=A_m\ e^{i\omega t}$
- \Box **Définir** l'amplitude complexe $A_m = Ae^{i\varphi}$ associée au signal $s = A\cos(\omega t + \varphi)$.
- \square Savoir qu'une somme de signaux harmonique de même pulsation ω est un signal harmonique de pulsation ω .
- ☐ Interférences entre deux ondes <u>mécaniques</u> de même fréquence :
 - Établir l'amplitude de l'onde résultante en fonction du déphasage.

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\varphi)}$$

- Établir & Énoncer les conditions d'interférences constructives ou destructives, en fonction du déphasage $\Delta \varphi$ et de la différence de marche δ .
- ☐ **Définir** le chemin optique.
- ☐ Interférences entre deux ondes lumineuses de même fréquence :
 - Établir la relation entre le déphasage et la différence de chemin optique / différence de marche.

$$\Delta \varphi = \frac{2\pi}{\lambda_0} \delta$$

• **Définir** l'éclairement. **Établir** la formule de Fresnel :

$$E(M) = E_1(M) + E_2(M) + 2\sqrt{E_1 E_2} \cos(\Delta \varphi)$$

- **Énoncer** les conditions d'interférences constructives ou destructives, en fonction du déphasage $\Delta \varphi$ et de la différence de marche δ .
- ☐ **Établir** la figure d'interférences obtenue à l'aide du dispositif des trous d'Young.
- \square Connaître le développement limité : $(1 + \varepsilon)^{\alpha} \simeq 1 + \alpha \varepsilon$.
- □ **Définir** l'interfrange d'une figure d'interférence.

E4 · Régime sinusoïdal forcé

Cours + Exercices

- ☐ Donner l'expression du signal complexe associé à un signal sinusoïdal.
- \square Connaître les correspondances : $d/dt \leftrightarrow j\omega$ et $\int dt \leftrightarrow 1/j\omega$
- ☐ **Définir** l'impédance d'un dipôle.

Ш	,,
	bobine.
	Connaître les équivalences BF et HF de ces dipôles.
	Établir & Énoncer les formules d'associations d'impédances en série et en
	dérivation.
	Établir & Énoncer les formules des ponts diviseur de tension et de courant avec
	des impédances.
	Savoir utiliser la notation complexe pour étudier un régime sinusoïdal forcé.
	Exemple du cours : étude de l'intensité dans le circuit RLC.
	Définir une résonance, une pulsation de coupure et la bande passante.
	Savoir que le facteur de qualité contrôle l'acuité de la résonance.