

Régression linéaire sur la calculatrice

Soit la réaction de décomposition du pentaoxyde de diazote :

Fiche Mémo

$$N_2 O_{5(g)} = 2 N O_{2(g)} + \frac{1}{2} O_{2(g)}$$

Au cours de la réaction, on mesure la pression partielle de $N_2O_{5(g)}$ en fonction du temps :

<i>t</i> (min)	0	10	20	40	60	80
P _{N205} (mbar)	$P_0 = 458$	339	251	138	76	43

On souhaite vérifier que la pression partielle en N_2O_5 (g) suit la loi ci-dessous et déterminer la valeur de k:

$$P_{N_2O_5} = P_0 e^{-kt} \iff ln\left(\frac{P_{N_2O_5}}{P_0}\right) = -kt$$

Pour cela, nous allons sur la calculatrice :

- \circ tracer les points expérimentaux $\ln\left(\frac{P_{N_2O_5}}{P_0}\right)$ en fonction de t ;
- \circ effectuer une régression linéaire pour obtenir le coefficient directeur (-k) de la droite ;
- o vérifier graphiquement que la droite de régression est cohérente avec le nuage de points expérimentaux.

Calculatrice TI-83 Prenium CE

Stockage des données

- o Aller dans « stats » puis « Modifier... ».
- \circ Dans la colonne « L₁ », recopier les valeurs de t (min).
- $\circ~$ Dans la colonne « L_2 », recopier les valeurs de $P_{N_2O_5}~(mbar).$
- Nous allons maintenant calculer ln (<sup>P_{N205}/_{P₀}) dans la troisième liste. Pour cela, placer le curseur sur la case « L₃ » et appuyer sur « entrer ». Appuyer sur les touches : « ln », « 2nde » puis « L₂ » (touche du chiffre 2), « ÷ », « 458 », «) », afin d'afficher à l'écran la formule :
 </sup>

Appuyer sur « entrer » pour valider. La calculatrice calcule automatiquement la liste 3.

Paramètres de régression

- \circ Aller dans « stats » puis « CALC », et sélectionner « RégLin(ax + b) ».
- Sélectionner les paramètres suivants : Xliste : L₁, Yliste : L₃. Ne rien mettre dans les autres paramètres.
- Appuyer sur « Calculer ». Le résultat de la régression s'affiche.

<u>Astuce</u> : pour supprimer des listes en entier, aller dans « stats » puis « EffListe ». Taper « (L_1) » puis « entrer » pour effacer la liste L_1 , ou « (L_1, L_2) » puis « entrer » pour effacer les listes L_1 et L_2 , etc.

Représentation graphique

- o Aller dans « graph stats » puis sélectionner « Graph1...Aff ».
- $\circ \ \ \, \text{Sélectionner les paramètres suivants}: Xliste: L_1, Yliste: L_3. Choisir la couleur de votre choix.$
- Aller dans « f(x) » et marquer dans « Y_1 » l'équation de régression : « $Y_1 = -0.02945 * X 6.38 * 10^{-3}$ ».
- Aller des « zoom » puis sélectionner « ZoomStat ».

Stockage des données

- Aller dans « MENU » puis « STAT ».
- $\circ~$ Dans la colonne « List 1 », recopier les valeurs de t (min).
- $\circ~$ Dans la colonne « List 2 », recopier les valeurs de $P_{N_2O_5}~(mbar).$
- Nous allons maintenant calculer $\ln \left(\frac{P_{N_2O_5}}{P_0}\right)$ dans la troisième liste. Pour cela, placer le curseur sur la case « List 3 » et appuyer sur les touches : « In », « (», « SHIFT » puis « List » (touche du chiffre 1), « 2 », « ÷ », « 458 », «) », afin d'afficher à l'écran la formule :

$$\ln$$
 (List 2 ÷ 458)

Appuyer sur « EXE » pour valider. La calculatrice calcule automatiquement la liste 3.

Paramètres de régression

- Aller dans l'outil « CALC » (touche F6 puis F2).
- Appuyer sur « SET » (touche F6). Sélectionner les paramètres suivants : 2Var XList : List1, 2Var YList : List3 et 2Var Freq : 1. Les paramètres 1Var XList et 1Var Freq ne nous intéressent pas.
- $\circ~$ Appuyer sur « EXIT », « REG », « x » et « ax+b ». Le résultat de la régression s'affiche.

Astuce : pour supprimer une liste en entier, placer le curseur sur la liste correspondante et appuyer sur « DEL-A ».

Représentation graphique

- Aller dans « GRPH », « GPH1 », « CALC », « X » et « ax + b ». Le résultat de la régression s'affiche de nouveau.
- Appuyer sur « DRAW ».

Rédaction du résultat sur la copie

À la calculatrice, on effectue la régression linéaire y = ax + b, avec $y = \ln\left(\frac{P_{N_2O_5}}{P_0}\right)$ et x = t. La droite de régression modélise bien le nuage de points expérimentaux, le modèle affine est donc validé.

On obtient : a = -0,029645 et $b = -6,38 \cdot 10^{-3}$.

On en déduit la constante de vitesse :

 $k = 2,96 \cdot 10^{-2} \min^{-1}$