MPSI | Programme de colle | Semaine du 18/12/2023

C1 · Transformations chimiques

C2 · Cinétique chimique

Cours + Exercice

- □ **Définir**: vitesse (volumique) de formation d'un produit, vitesse de disparition d'un réactif, vitesse de réaction.
- ☐ Énoncer & Démontrer la relation entre la vitesse (volumique) de réaction et une quantité de matière (ou une concentration) :

$$v = \frac{dx}{dt} = \frac{1}{v_i} \frac{d[A_i]}{dt}$$

- \Box **Déterminer** graphiquement la vitesse de réaction à un instant t, à partir d'un graphe $[A_i](t)$.
- ☐ **Définir** une réaction avec ordre.
- ☐ **Vocabulaire** : ordre partiel, ordre global, constante de vitesse.
- ☐ **Déterminer**, selon l'ordre global, l'unité de la constante de vitesse.
- ☐ **Énoncer** la loi d'Arrhenius. **Définir** l'énergie d'activation.
- ☐ **Citer** des facteurs cinétiques.
- Définir le temps de demi-vie d'un réactif. Définir le temps de demi-réaction.
- ☐ Pour les réactions avec un ordre simple 0, 1 et 2 :
 - Exprimer la loi de vitesse :

$$v(t) = -\frac{1}{a} \frac{d[A]}{dt} = k [A]^{\alpha}$$

- Résoudre l'équation différentielle et déterminer une loi affine en temps.
- **Déterminer** le temps de demi-réaction.
- ☐ Pour les autres réactions admettant un ordre, savoir se ramener aux cas précédents dans le cas :
 - d'une dégénérescence de l'ordre ;
 - de conditions initiales stœchiométriques.
- □ **Vocabulaire** : constante de vitesse apparente, ordre apparent.
- ☐ **Déterminer** un ordre et une constante de vitesse à l'aide de :
 - la méthode différentielle ;
 - la méthode des temps de demi-réaction ;
 - la méthode intégrale.
- \Box **Déterminer** une énergie d'activation à partir de valeurs de k(T) à différentes températures.

C3 · Structure et propriétés des entités chimiques

Cours + Exercices	
□ Vocabulaire : famille, période, bloc, gaz noble.	
☐ Déterminer le nombre d'électrons de valence d'un atome à partir de sa dans le tableau périodique (blocs s et p uniquement).	a position
□ Définir l'électronégativité et la polarisabilité d'un élément.	
☐ Comparer l'électronégativité et la polarisabilité de deux éléments à part	tir de leur
position dans le tableau périodique.	in ac icai
☐ Définir & Déterminer la charge formelle d'un ion monoatomique.	
Établir le schéma de Lewis d'un élément ou d'un ion monoatomique.	
☐ Énoncer la règle du duet et la règle de l'octet. Connaître les écarts à la	règle de
l'octet.	
☐ Citer un ordre de grandeur de la longueur et de l'énergie d'une liaison c	
☐ Définir la mésomérie. Savoir identifier la forme mésomère la plus stable	2.
☐ Établir le schéma de Lewis d'une molécule ou d'un ion polyatomique.	
☐ Savoir que la géométrie d'une entité résulte d'une minimisation de so	n énergie
potentielle.	
□ Donner la géométrie de molécules simples.	D (C) .
□ Vocabulaire : liaison non polarisée, liaison polarisée, liaison ionique. nature de la liaison en fonction de la différence d'électronégativité	
atomes. Définir un moment dipolaire électrostatique.	
☐ Déterminer la direction et le sens du moment dipolaire d'une liaison co	valente
☐ Déterminer , par des arguments de symétrie, la direction et le sens du	
dipolaire d'une molécule de géométrie donnée.	momen
□ Définir les trois interactions de Van der Waals et citer un ordre de gran	ndeur des
énergies d'interactions.	
□ Définir la liaison hydrogène et citer un ordre de grandeur de	l'énergie
d'interaction.	
☐ Savoir interpréter l'évolution de températures de changement d'état	de deux
molécules structurellement proches.	
Décrire le processus de solvatation des ions (issus d'un solide moléc	ulaire ou
ionique).	ràna
☐ Définir les propriétés d'un solvant : moment dipolaire, caractère protog ☐ Prévoir la solubilité d'une espèce chimique dans un solvant donné	gene.

☐ Prévoir la miscibilité de deux solvants.